

LA-UR-21-24290

Approved for public release; distribution is unlimited.

Strength, Fracture Evolution, and Permeability Changes from Confined Brazilian Tests on Sandstone Title:

Author(s): Hagengruber, Tyler Louis

Intended for: Coffee and Geophysics Talk with EES

Issued: 2021-05-04

Strength, Fracture Evolution, and Permeability Changes from Confined Brazilian Tests on Sandstone

Tyler Hagengruber

April 19th, 2021

Outline

- 1. Introduction
- 2. Materials and Methods
- 3. Strength and Failure Results
- 4. Permeability and Fracture Evolution Results
- 5. Conclusions

Introduction

Background and Motivation

- Collaborative research between UNM and LANL
 - Phase I Quasi-static Brazilian test with concurrent permeability measurements.
 - Phase II Quasi-static confined Brazilian test with concurrent permeability.
 - Phase III Dynamic testing.
- Development of HOSS (Hybrid Optimization Software Suite)

Strength in the Confined Extension Region

Failure curve in principal stress (σ_1 - σ_3) space. The confined extension region is shown as shaded area. The stress paths of different strength tests are shown, including the confined Brazilian test. Figure modified from Patel and Martin, 2018.

Objectives

- Understand failure conditions of rock in the confined extension region
- Understand the conditions under which microcracks and permeability develop in the confined extension region
- Compare and analyze numerical simulations with experimental results

Materials and Methods

Materials

- Royal Red Sandstone quarried from Kanab, Utah
 - Small grain size (20-100 microns)
 - Homogenous
 - Relatively weak sandstone
- Confined Flattened Brazilian Tests
- Sample Dimensions
 - 50.8 mm diameter
 - 25.4 mm thickness
 - 1.0 mm flattened

Sample Preparation

Schematic of the sample jacketing construction modified from Boyce (2019).

Sample Preparation

Experimental Setup

Schematic of the permeability and loading system inside the pressure vessel, modified from Boyce (2019).

Experimental Setup

Geometric representation of a confined Brazilian test (left) and numerical simulation results observed using Paraview (right).

Testing Matrix

Test Type	Sample #s	Confining Pressure (MPa)					
		0	2.76	8.27	13.79	20.68	27.58
To Failure (Includes Perm.)	A-1 to A-24	4 (0)	4 (3)	7 (5)	4 (3)	3 (2)	2 (2)
Porosity and Permeability pre- failure	B-1 to B-7	0	7	0	0	0	0

Strength and Failure Results

Force - Displacement

Principal Stresses at Failure

Principal Stresses at Failure

Mogi-Coulomb Failure Criterion

Numerical Results using HOSS

Numerical vs. Experimental Stresses

Numerical vs. Experimental Stresses

Permeability and Fracture Evolution Results

Force and Permeability vs. Time

2.76 MPa 27.58 MPa

Permeability Thresholds

Permeability vs. Confining Stress

Permeability Thresholds in Principal Stress Space

Unloading and Reloading Cycles

Unloading and Reloading Cycles

2.76 MPa

27.58 MPa

2.76 MPa

27.58 MPa

2.76 MPa

27.58 MPa

Conclusions

Conclusions

Strength and Failure

- Strength was a strong function of the intermediate principal stress
- The failure data is well fit to Mogi-Coulomb strength criteria
- A transition from tensile to shear failure was observed, rather than a tension cutoff

Permeability and Fracture Evolution

- Initial permeability and subsequent increases in permeability is highly dependent on the intermediate principal stress
- Stress conditions coincident with permeability increases are also frictional/shear in nature
- During unloading and reloading cycles, reactivation of crack networks occur due to shear stresses

Numerical Modeling Comparisons

- Consistently and accurately replicated strength and failure behavior
- Inconclusive observations from fracture network development

Future Work

- Development of a failure criterion applicable to the tensile-shear transition region for this sandstone
- Expanding this testing to other materials
- Comparing damage with the increases in permeability using acoustic emissions
- Additional numerical simulation calibration with HOSS to determine causes of inconsistencies in fracture network geometry

References

- Bobich, J. 2005. "Experimental Analysis of the Extension to Shear Fracture Transition in Berea Sandstone." Master's Thesis, Texas A&M University.
- Boyce, S. 2019. "The Development of a Novel Experiment on Confined, Flattened Brazilian Disks to Correlate Damage and Permeability in Brittle Geo-Materials." Master's Thesis, University of New Mexico.
- Fairhurst, C. 1964. "On the Validity of the 'Brazilian' Test for Brittle Materials." *International Journal of Rock Mechanics and Mining Sciences* 1:535-546.
- Hoek, E., and C.D. Martin. 2014. "Fracture Initiation and Propagation in Intact Rock A Review." *Journal of Rock Mechanics and Geotechnical Engineering* 6 (4): 287–300.
- Li, Z., L. Wang, Y. Lu, W. Li, and K. Wang. 2018. "Experimental Investigation on the Deformation, Strength, and Acoustic Emission Characteristics of Sandstone under True Triaxial Compression." *Advances in Materials Science and Engineering* 2018: 1–16.
- Patel, S., and C. D. Martin. 2018. "Application of Flattened Brazilian Test to Investigate Rocks Under Confined Extension." *Rock Mechanics and Rock Engineering* 51 (12)
- Ramsey, J. M., and F. M. Chester. 2004. "Hybrid Fracture and the Transition from Extension Fracture to Shear Fracture." *Nature* 428 (6978): 63–66.

